'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Wed, 20 Nov 2024 03:23:20 EST Wed, 20 Nov 2024 03:23:20 EST jirtle@radonc.duke.edu james001@jirtle.com Epigenome-wide association study of long-term psychosocial stress in older adults. Opsasnick LA, Zhao W, Schmitz LL, Ratliff SM, Faul JD, Zhou X, Needham BL, Smith JA
Epigenetics (Dec 2024)

Long-term psychosocial stress is strongly associated with negative physical and mental health outcomes, as well as adverse health behaviours; however, little is known about the role that stress plays on the epigenome. One proposed mechanism by which stress affects DNA methylation is through health behaviours. We conducted an epigenome-wide association study (EWAS) of cumulative psychosocial stress ( = 2,689) from the Health and Retirement Study (mean age = 70.4 years), assessing DNA methylation (Illumina Infinium HumanMethylationEPIC Beadchip) at 789,656 CpG sites. For identified CpG sites, we conducted a formal mediation analysis to examine whether smoking, alcohol use, physical activity, and body mass index (BMI) mediate the relationship between stress and DNA methylation. Nine CpG sites were associated with psychosocial stress (all  < 9E-07; FDR q < 0.10). Additionally, health behaviours and/or BMI mediated 9.4% to 21.8% of the relationship between stress and methylation at eight of the nine CpGs. Several of the identified CpGs were in or near genes associated with cardiometabolic traits, psychosocial disorders, inflammation, and smoking. These findings support our hypothesis that psychosocial stress is associated with DNA methylation across the epigenome. Furthermore, specific health behaviours mediate only a modest percentage of this relationship, providing evidence that other mechanisms may link stress and DNA methylation.]]>
Wed, 31 Dec 1969 19:00:00 EST
Genomic, epigenomic and transcriptomic landscape of glioblastoma. Dakal TC, Kakde GS, Maurya PK
Metab Brain Dis (Dec 2024)

The mostly aggressive and extremely malignant type of central nervous system is Glioblastoma (GBM), which is characterized by an extremely short average survival time of lesser than 16 months. The primary cause of this phenomenon can be attributed to the extensively altered genome of GBM, which is characterized by the dysregulation of numerous critical signaling pathways and epigenetics regulations associated with proliferation, cellular growth, survival, and apoptosis. In light of this, different genetic alterations in critical signaling pathways and various epigenetics regulation mechanisms are associated with GBM and identified as distinguishing markers. Such GBM prognostic alterations are identified in PI3K/AKT, p53, RTK, RAS, RB, STAT3 and ZIP4 signaling pathways, metabolic pathway (IDH1/2), as well as alterations in epigenetic regulation genes (MGMT, CDKN2A-p16CDKN2B-p15). The exploration of innovative diagnostic and therapeutic approaches that specifically target these pathways is utmost importance to enhance the future medication for GBM. This study provides a comprehensive overview of dysregulated epigenetic mechanisms and signaling pathways due to mutations, methylation, and copy number alterations of in critical genes in GBM with prevalence and emphasizing their significance.]]>
Wed, 31 Dec 1969 19:00:00 EST
ChIPmentation for Epigenomic Analysis in Fission Yeast. Dewornu FS, Tong P, Torres-Garcia S, Pidoux A, Allshire R, Shukla M
Methods Mol Biol (2025)

Histone modifications and transcription factor-DNA interactions regulate vital processes such as transcription, recombination, repair, and accurate chromosome segregation. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been instrumental in studying genome-wide distribution of DNA-bound or chromatin-associated factors and histone posttranslational modifications (PTMs). Here, we describe a ChIPmentation protocol adapted for fission yeast, Schizosaccharomyces pombe. This method merges Tn5 mediated tagmentation with existing ChIP protocols, resulting in lower sample input requirements with significant reduction in hands-on time and sample preparation costs.]]>
Wed, 31 Dec 1969 19:00:00 EST
Hypomethylation at H19DMR in penile squamous cell carcinoma is not related to HPV infection. da Silva Santos R, Pascoalino Pinheiro D, Gustavo Hirth C, Barbosa Bezerra MJ, Joyce de Lima Silva-Fernandes I, Andréa da Silva Oliveira F, Viana de Holanda Barros M, Silveira Ramos E, A Moura A, Filho OMM, Pessoa C, Miranda Furtado CL
Epigenetics (Dec 2024)

Penile squamous cell carcinoma (SCC) is a rare and aggressive tumour mainly related to lifestyle behaviour and human papillomavirus (HPV) infection. Environmentally induced loss of imprinting (LOI) at the H19 differentially methylated region (H19DMR) is associated with many cancers in the early events of tumorigenesis and may be involved in the pathogenesis of penile SCC. We sought to evaluate the DNA methylation pattern at H19DMR and its association with HPV infection in men with penile SCC by bisulfite sequencing (bis-seq). We observed an average methylation of 32.2% ± 11.6% at the H19DMR of penile SCC and did not observe an association between the p16+ ( = 0.59) and high-risk HPV+ ( = 0.338) markers with methylation level. The average methylation did not change according to HPV positive for p16+ or hrHPV+ (35.4% ± 10%) and negative for both markers (32.4% ± 10.1%) groups. As the region analysed has a binding site for the CTCF protein, the hypomethylation at the surrounding CpG sites might alter its insulator function. In addition, there was a positive correlation between intense polymorphonuclear cell infiltration and hypomethylation at H19DMR ( = 0.035). Here, we report that hypomethylation at H19DMR in penile SCC might contribute to tumour progression and aggressiveness regardless of HPV infection.]]>
Wed, 31 Dec 1969 19:00:00 EST
Extracting Chromosome Structural Information as One-Dimensional Metrics and Integrating Them with Epigenomics. Wang J, Chen H
Methods Mol Biol (2025)

Hi-C is a powerful method for obtaining genome-wide chromosomal structural information. The typical Hi-C analysis utilizes a two-dimensional (2D) contact matrix, which poses challenges for quantitative comparisons, visualizations, and integrations across multiple datasets. Here, we present a protocol for extracting one-dimensional (1D) features from chromosome structure data by HiC1Dmetrics. Leveraging these 1D features enables integrated analysis of Hi-C and epigenomic data.]]>
Wed, 31 Dec 1969 19:00:00 EST
Transgenerational epigenetic self-memory of dosage is associated with methylation and altered growth trajectories and neonatal hormones. Martinez ME, Karaczyn A, Wu Z, Bennett CA, Matoin KL, Daigle HM, Hernandez A
Epigenetics (Dec 2024)

Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene () regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the imprinted domain, including increased methylation in and altered foetal brain expression of other genes of the imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone . Our results provide a novel paradigm of epigenetic self-memory by which gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.]]>
Wed, 31 Dec 1969 19:00:00 EST
Learning Enhancer-Gene associations from Bulk Transcriptomic and Epigenetic Sequencing Data with STITCHIT. Rumpf L, Schulz MH
Methods Mol Biol (2025)

To reveal gene regulation mechanisms, it is essential to understand the role of regulatory elements, which are possibly distant from gene promoters. Integrative analysis of epigenetic and transcriptomic data can be used to gain insights into gene-expression regulation in specific phenotypes. Here, we discuss STITCHIT, an approach to dissect epigenetic variation in a gene-specific manner across many samples for the identification of regulatory elements without relying on peak calling algorithms. The obtained genomic regions are then further refined using a regularized linear model approach, which can also be used to predict gene expression. We illustrate the use of STITCHIT using H3k27ac ChIP-seq and RNA-seq data from the International Human Epigenome Consortium (IHEC).]]>
Wed, 31 Dec 1969 19:00:00 EST
AIMER: A SNP-independent software for identifying imprinting-like allelic methylated regions from DNA methylome. Luo Y, Zhou T, Liu D, Wang F, Zhao Q
Comput Struct Biotechnol J (Dec 2024)

Genomic imprinting is essential for mammalian growth and embryogenesis. High-throughput bisulfite sequencing accompanied with parental haplotype-specific information allows analysis of imprinted genes and imprinting control regions (ICRs) on a large scale. Currently, although several allelic methylated regions (AMRs) detection software were developed, methods for detecting imprinted AMRs is still limited. Here, we developed a SNP-independent statistical approach, AIMER, to detect imprinting-like AMRs. By using the mouse frontal cortex methylome as input, we demonstrated that AIMER performs very well in detecting known germline ICRs compared with other methods. Furthermore, we found the putative parental AMRs AIMER detected could be distinguished from sequence-dependent AMRs. Finally, we found a novel germline imprinting-like AMR using WGBS data from 17 distinct mouse tissue samples. The results indicate that AIMER is a good choice for detecting imprinting-like (parent-of-origin-dependent) AMRs. We hope this method will be helpful for future genomic imprinting studies. The Python source code for our project is now publicly available on both GitHub (https://github.com/ZhaoLab-TMU/AIMER) and Gitee (https://gitee.com/zhaolab_tmu/AIMER).]]>
Wed, 31 Dec 1969 19:00:00 EST
Prediction of Enhancer-Gene Interactions Using Chromatin-Conformation Capture and Epigenome Data Using STARE. Hecker D, Schulz MH
Methods Mol Biol (2025)

Disentangling the relationship of enhancers and genes is an ongoing challenge in epigenomics. We present STARE, our software to quantify the strength of enhancer-gene interactions based on enhancer activity and chromatin contact data. It implements the generalized Activity-by-Contact (gABC) score, which allows predicting putative target genes of candidate enhancers over any desired genomic distance. The only requirement for its application is a measurement of enhancer activity. In addition to regulatory interactions, STARE calculates transcription factor (TF) affinities on gene level. We illustrate its usage on a public single-cell data set of the human heart by predicting regulatory interactions on cell type level, by giving examples on how to integrate them with other data modalities, and by constructing TF affinity matrices.]]>
Wed, 31 Dec 1969 19:00:00 EST
Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment. Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B, Liu J, Zhang J, Sun X, Zhao H, Xie Y, Liao K, Wang X
Genes Dis (Jan 2025)

In precision cancer therapy, addressing intra-tumor heterogeneity poses a significant obstacle. Due to the heterogeneity of each cell subtype and between cells within the tumor, the sensitivity and resistance of different patients to targeted drugs, chemotherapy, , are inconsistent. Concerning a specific tumor type, many feasible treatments or combinations can be used by specifically targeting the tumor microenvironment. To solve this problem, it is necessary to further study the tumor microenvironment. Single-cell sequencing techniques can dissect distinct tumor cell populations by isolating cells and using statistical computational methods. This technology may assist in the selection of targeted combination therapy, and the obtained cell subset information is crucial for the rational application of targeted therapy. In this review, we summarized the research and application advances of single-cell sequencing technology in the tumor microenvironment, including the most commonly used single-cell genomic and transcriptomic sequencing, and their future development direction was proposed. The application of single-cell sequencing technology has been expanded to include epigenomics, proteomics, metabolomics, and microbiome analysis. The integration of these different omics approaches has significantly advanced the development of single-cell multiomics sequencing technology. This innovative approach holds immense potential for various fields, such as biological research and medical investigations. Finally, we discussed the advantages and disadvantages of using single-cell sequencing to explore the tumor microenvironment.]]>
Wed, 31 Dec 1969 19:00:00 EST
Omics Approaches to Investigate the Pathogenesis of Suicide. Boldrini M, Xiao Y, Singh T, Zhu C, Jabbi M, Pantazopoulos H, Gürsoy G, Martinowich K, Punzi G, Vallender EJ, Zody M, Berretta S, Hyde TM, Kleinman JE, Marenco S, Roussos P, Lewis DA, Turecki G, Lehner T, Mann JJ
Biol Psychiatry (Dec 2024)

Suicide is the second leading cause of death in U.S. adolescents and young adults and is generally associated with a psychiatric disorder. Suicidal behavior has a complex etiology and pathogenesis. Moderate heritability suggests genetic causes. Associations between childhood and recent life adversity indicate contributions from epigenetic factors. Genomic contributions to suicide pathogenesis remain largely unknown. This article is based on a workshop held to design strategies to identify molecular drivers of suicide neurobiology that would be putative new treatment targets. The panel determined that while bulk tissue studies provide comprehensive information, single-nucleus approaches that identify cell type-specific changes are needed. While single-nuclei techniques lack information on cytoplasm, processes, spines, and synapses, spatial multiomic technologies on intact tissue detect cell alterations specific to brain tissue layers and subregions. Because suicide has genetic and environmental drivers, multiomic approaches that combine cell type-specific epigenome, transcriptome, and proteome provide a more complete picture of pathogenesis. To determine the direction of effect of suicide risk gene variants on RNA and protein expression and how these interact with epigenetic marks, single-nuclei and spatial multiomics quantitative trait loci maps should be integrated with whole-genome sequencing and genome-wide association databases. The workshop concluded with a recommendation for the formation of an international suicide biology consortium that will bring together brain banks and investigators with expertise in cutting-edge omics technologies to delineate the biology of suicide and identify novel potential treatment targets to be tested in cellular and animal models for drug and biomarker discovery to guide suicide prevention.]]>
Wed, 31 Dec 1969 19:00:00 EST
In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart. Semik-Gurgul E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Rybińska J, Ząbek T
Mamm Genome (Dec 2024)

DNA methylation and microRNA (miRNA) expression are epigenetic mechanisms essential for regulating tissue-specific gene expression and metabolic processes. However, high-resolution transcriptome, methylome, or miRNAome data is only available for a few model organisms and selected tissues. Up to date, only a few studies have reported on gene expression, DNA methylation, or miRNA expression in adult equine tissues at the genome-wide level. In the present study, we used RNA-Seq, miRNA-seq, and reduced representation bisulfite sequencing (RRBS) data from the heart, lung, and liver tissues of healthy cold-blooded horses to identify differentially expressed genes (DEGs), differentially expressed miRNA (DE miRNA) and differentially methylated sites (DMSs) between three types of horse tissues. Additionally, based on integrative omics analysis, we described the observed interactions of epigenetic mechanisms with tissue-specific gene expression alterations. The obtained data allowed identification from 4067 to 6143 DMSs, 9733 to 11,263 mRNAs, and 155 to 185 microRNAs, differentially expressed between various tissues. We pointed out specific genes whose expression level displayed a negative correlation with the level of CpG methylation and miRNA expression and revealed biological processes that they enrich. Furthermore, we confirmed and validated the accuracy of the Next-Generation Sequencing (NGS) results with bisulfite sequencing PCR (BSP) and quantitative PCR (qPCR). This comprehensive analysis forms a strong foundation for exploring the epigenetic mechanisms involved in tissue differentiation, especially the growth and development of the equine heart, lungs, and liver.]]>
Wed, 31 Dec 1969 19:00:00 EST
Artificial intelligence and deep learning algorithms for epigenetic sequence analysis: A review for epigeneticists and AI experts. Tahir M, Norouzi M, Khan SS, Davie JR, Yamanaka S, Ashraf A
Comput Biol Med (Dec 2024)

Epigenetics encompasses mechanisms that can alter the expression of genes without changing the underlying genetic sequence. The epigenetic regulation of gene expression is initiated and sustained by several mechanisms such as DNA methylation, histone modifications, chromatin conformation, and non-coding RNA. The changes in gene regulation and expression can manifest in the form of various diseases and disorders such as cancer and congenital deformities. Over the last few decades, high-throughput experimental approaches have been used to identify and understand epigenetic changes, but these laboratory experimental approaches and biochemical processes are time-consuming and expensive. To overcome these challenges, machine learning and artificial intelligence (AI) approaches have been extensively used for mapping epigenetic modifications to their phenotypic manifestations. In this paper we provide a narrative review of published research on AI models trained on epigenomic data to address a variety of problems such as prediction of disease markers, gene expression, enhancer-promoter interaction, and chromatin states. The purpose of this review is twofold as it is addressed to both AI experts and epigeneticists. For AI researchers, we provided a taxonomy of epigenetics research problems that can benefit from an AI-based approach. For epigeneticists, given each of the above problems we provide a list of candidate AI solutions in the literature. We have also identified several gaps in the literature, research challenges, and recommendations to address these challenges.]]>
Wed, 31 Dec 1969 19:00:00 EST
Insight into the complexity of male infertility: a multi-omics review. Podgrajsek R, Hodzic A, Stimpfel M, Kunej T, Peterlin B
Syst Biol Reprod Med (Dec 2024)

Male infertility is a reproductive disorder, accounting for 40-50% of infertility. Currently, in about 70% of infertile men, the cause remains unknown. With the introduction of novel omics and advancement in high-throughput technology, potential biomarkers are emerging. The main purpose of our work was to overview different aspects of omics approaches in association with idiopathic male infertility and highlight potential genes, transcripts, non-coding RNA, proteins, and metabolites worth further exploring. Using the Gene Ontology (GO) analysis, we aimed to compare enriched GO terms from each omics approach and determine their overlapping. A PubMed database screening for the literature published between February 2014 and June 2022 was performed using the keywords: male infertility in association with different omics approaches: genomics, epigenomics, transcriptomics, ncRNAomics, proteomics, and metabolomics. A GO enrichment analysis was performed using the Enrichr tool. We retrieved 281 global studies: 171 genomics (DNA level), 21 epigenomics (19 of methylation and two histone residue modifications), 15 transcriptomics, 31 non-coding RNA, 29 proteomics, two protein posttranslational modification, and 19 metabolomics studies. Gene ontology comparison showed that different omics approaches lead to the identification of different molecular factors and that the corresponding GO terms, obtained from different omics approaches, do not overlap to a larger extent. With the integration of novel omics levels into the research of idiopathic causes of male infertility, using multi-omic systems biology approaches, we will be closer to finding the potential biomarkers and consequently becoming aware of the entire spectrum of male infertility, their cause, prognosis, and potential treatment.]]>
Wed, 31 Dec 1969 19:00:00 EST
Methylome profile of medaka eggs and sperm. Wang X, Bhandari RK
Epigenetics (Dec 2024)

Eggs and sperm are responsible for the continuation of generations. Following the epigenetic reprogramming of the embryo, core epigenetic information present in the sperm and eggs is transmitted to offspring somatic cells prior to the blastula stage, which specifically influences gene expression in the cells. Differences in the patterns of DNA methylation between the paternal and maternal genomes are critical to regulating allele-specific gene expression in the developing embryo, constituting the basis of genomic imprinting in mammals. While the information on allele-specific epigenetic information has been limited to mammals, it is not clearly understood whether non-mammalian vertebrate gametes possess any sex-specific allelic epigenetic information and whether somatic cells maintain the allele-specific epigenetic information, particularly DNA methylation. To determine the landscape of DNA methylation in paternal and maternal alleles in a non-mammalian vertebrate, we profiled the methylome of egg in medaka fish and compared it with our previously published medaka sperm methylome. We identified a set of gamete-specific differentially methylated regions (DMRs) in the genome- medaka eggs maintained a significantly lower global methylation profile than the sperm. Based on our sequencing depth and data, 10 DMRs were hypermethylated, and 237 DMRs were hypomethylated in the eggs compared to the sperm methylome. Somatic cells in blastula maintained some of those parental gamete-specific DNA methylation profiles. Those DMRs are associated with 70 genes, suggesting that they may have imprinted-like functions and warrant further investigation.]]>
Wed, 31 Dec 1969 19:00:00 EST
Genetic confounds of transgenerational epigenetic inheritance in mice. Sapozhnikov DM, Szyf M
Epigenetics (Dec 2024)

Transgenerational epigenetic inheritance in mammals remains a controversial phenomenon. A recent study by Takahashi et al. provides evidence for this mode of inheritance in mice by using a CRISPR/Cas9-based epigenetic editing technique to modify DNA methylation levels at specific promoters and then demonstrating the inheritance of the gain in methylation in offspring. In this technical commentary, we argue that the method used in the original study inherently amplifies the likelihood of genetic changes that thereafter lead to the heritability of epigenetic changes. We provide evidence that genetic changes from multiple sources do indeed occur in these experiments and explore several avenues by which these changes could be causal to the apparent inheritance of epigenetic changes. We conclude a genetic basis of inheritance cannot be ruled out and thus transgenerational epigenetic inheritance has not been adequately established by the original study.]]>
Wed, 31 Dec 1969 19:00:00 EST
Unlocking plant resilience: Advanced epigenetic strategies against heavy metal and metalloid stress. Iqbal B, Ahmad N, Li G, Jalal A, Khan AR, Zheng X, Naeem M, Du D
Plant Sci (Dec 2024)

The escalating threat of heavy metal and metalloid stress on plant ecosystems requires innovative strategies to strengthen plant resilience and ensure agricultural sustainability. This review provides important insights into the advanced epigenetic pathways to improve plant tolerance to toxic heavy metals and metalloid stress. Epigenetic modifications, including deoxyribonucleic acid (DNA) methylation, histone modifications, and small ribonucleic acid (RNA) engineering, offer innovative avenues for tailoring plant responses to mitigate the impact of heavy metal and metalloid stress. Technological advancements in high-throughput genome sequencing and functional genomics have unraveled the complexities of epigenetic regulation in response to heavy metal and metalloid contamination. Recent strides in this field encompass identifying specific epigenetic markers associated with stress resilience, developing tools for editing the epigenome, and integrating epigenetic data into breeding programs for stress-resistant crops. Understanding the dynamic interaction between epigenetics and stress responses holds immense potential to engineer resilient crops that thrive in environments contaminated with heavy metals and metalloids. Eventually, harnessing epigenetic strategies presents a promising trajectory toward sustainable agriculture in the face of escalating environmental challenges. Plant epigenomics expands, the potential for sustainable agriculture by implementing advanced epigenetic approaches becomes increasingly evident. These developments lay the foundation for understanding the growing significance of epigenetics in plant stress biology and its potential to mitigate the detrimental effects of heavy metal and metalloid pollution on global agriculture.]]>
Wed, 31 Dec 1969 19:00:00 EST
DNA methylation variation and growth in the clonal is regulated by both past and present lead environments. Quan J, Song S, Xing L, Liu X, Yue M
Epigenetics (Dec 2024)

Studies suggest that clonal plants' ability to select habitats and forage in a heterogeneous environment is influenced by their past environment, with stress legacy potentially playing a crucial role. In this study, we examined parental ramets of Focke that were subject to either a control or lead-contaminated environment (past environment), and their newborn offspring were then transplanted into control, homogeneous lead or heterogeneous lead environment (present environment). We analysed how past and present environments affect plant growth and DNA methylation in offspring. The result shown that the DNA methylation loci composition of offspring was affected by the interaction of parental environment and offspring environment, and DNA methylation levels were higher in heterogeneous environments. Moreover, our findings indicate that offspring would thrive in the heterogeneous lead environment if they did not experience lead pollution in the past, their progeny will avoid lead toxicity by reducing underground biomass allocation. However, when the parents experienced lead stress environment, their biomass allocation strategies disappeared, and they prefer to grow in favourable patches to avoid lead-contaminated patches. We concluded that the integration of historical parental exposure to lead-contaminated and current information about their offspring's environment are impacting plant phenotypes. It is possible that the stress legacy from the parents has been transmitted to their offspring ramets, and the stress legacy is at least partly based on heritable epigenetic variation. The phenotypic variation regulated by the stress legacy affects the growth performance, biomass allocation strategy, and even the behaviour of .]]>
Wed, 31 Dec 1969 19:00:00 EST
ZFAT (isoform-specific) and its antisense RNA 1 (ZFAT-AS1) are two allele-specific monoallelically expressed genes in cattle. Zhang Y, Zheng Y, Yu W, Yang L, Zhang C, Li S, Li S
Anim Genet (Dec 2024)

In mammals, imprinted genes are characterised by a monoallelic expression, which is based on parental origin and is essential for both foetal and placental development. The ZFAT gene encodes a transcriptional factor, and its non-coding antisense RNA, ZFAT-AS1, overlaps with the ZFAT locus. Both ZFAT and ZFAT-AS1 are maternally imprinted in human placentas. In bovines, the imprinting status of the ZFAT and ZFAT-AS1 genes has yet to be reported. In this study, we analysed the allelic expression of three transcript variants (X1-X3) of the bovine ZFAT and ZFAT-AS1 genes in somatic tissues and placentas using a single nucleotide polymorphism-based method. The results showed that bovine ZFAT exhibited isoform-specific paternal expression. The ZFAT X2 variant exhibited monoallelic expression in the bovine placentas and biallelic expression in the six bovine somatic tissues (heart, liver, spleen, lung, kidney and brain). However, the ZFAT X1 and X3 variants were biallelically expressed in both bovine tissues and placentas. A 311 bp bovine ZFAT-AS1 complementary DNA (cDNA) sequence was obtained by aligning the human ZFAT-AS1 cDNA sequence with the bovine genome and conducting reverse transcription polymerase chain reaction amplification. Bovine ZFAT-AS1 have monoallelic expression in bovine placentas and somatic tissues. In addition, the DNA methylation of two regions was characterised, including the partial promoter, and exon 1 and intron 1 regions of ZFAT, and there were no differentially methylated regions.]]>
Wed, 31 Dec 1969 19:00:00 EST
Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA. Doan TNA, Cowley JM, Phillips AL, Briffa JF, Leemaqz SY, Burton RA, Romano T, Wlodek ME, Bianco-Miotto T
Epigenetics (Dec 2024)

Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase and the imprinted genes (Cyclin-dependent kinase inhibitor 1C) and (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA ( opposite strand/antisense transcript 1). expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between and in the E20 growth restricted group (Spearman's  0.014). No correlation was observed between and expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.]]>
Wed, 31 Dec 1969 19:00:00 EST