'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Sun, 29 Mar 2015 20:08:54 PDT Sun, 29 Mar 2015 20:08:54 PDT jirtle@radonc.duke.edu james001@jirtle.com Association of folate and other one-carbon related nutrients with hypermethylation status and expression of RARB, BRCA1, and RASSF1A genes in breast cancer patients. Pirouzpanah S, Taleban FA, Mehdipour P, Atri M
J Mol Med (Berl) (Mar 2015)

Dietary methyl group donors could influence the hypermethylation status of certain putative genes. The present study explored the possible associations of dietary intake of one-carbon metabolism-related nutrients with promoter hypermethylation status and expression of retinoic acid receptor-beta (RARB), breast cancer-1 (BRCA1), and Ras association domain family-1, isoform A (RASSF1A) genes in Iranian women with breast cancer (BC). The hypermethylation status was investigated in 146 dissected BC tissue samples using methylation-specific PCR. The expression level was evaluated by real-time RT-PCR. Dietary nutrients were estimated using a validated 136-item food frequency questionnaire. Expression levels of the genes were associated with the unmethylated status of related promoters (p < 0.05). The crude dietary folate and adjusted cobalamin intakes were inversely associated with methylated RARB and BRCA1. Low intake of residual folate and cobalamin was correlated with the methylated status of RARB for subjects at <48 years of age, and folate alone was linked to BRCA1 at >48 years of age. High dietary intake of riboflavin and pyridoxine was the only determinant of the methylated promoter of RARB at odds ratios (ORs) of 4.15 (95 % confidence interval (CI) 1.28-13.50) and 2.53 (95 % CI 1.14-3.83) in multivariate models, respectively. One-carbon nutrients most often correlated inversely with the methylation-influenced expression of RARB. Although high folate intake increased the chance of unmethylation-dependent overexpression of BRCA1 3-fold, cobalamin and methionine were inversely linked to methylation-mediated expression. Nutritional epigenomics less actively influenced RASSF1A. These findings provide new insights into and a basic understanding of the selective contributions of individual B vitamins on hypermethylation and methylation-related expression of RARB and BRCA1 in BC.]]>
Wed, 25 Mar 2015 00:00:00 PDT
Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Liu Y, Chen H, Sun Z, Chen X
Cancer Lett (Mar 2015)

Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.]]>
Tue, 24 Mar 2015 00:00:00 PDT
Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Marzese DM, Hoon DS
Expert Rev Mol Diagn (Mar 2015)

DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping have been developed recently and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers.]]>
Mon, 23 Mar 2015 00:00:00 PDT
The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: A review. Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A
Gene (May 2015)

Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.]]>
Fri, 20 Mar 2015 00:00:00 PDT
Mother and offspring in conflict: why not? Úbeda F, Gardner A
PLoS Biol (Mar 2015)

A gene mediating interactions between mouse mothers and their pups has recently been claimed to support coadaptation rather than the kinship theory of genomic imprinting. This Formal Comment argues that this claim is unfounded.]]>
Thu, 19 Mar 2015 00:00:00 PDT
A retrospective likelihood approach for efficient integration of multiple omics factors in case-control association studies. Balliu B, Tsonaka R, Boehringer S, Houwing-Duistermaat J
Genet Epidemiol (Mar 2015)

Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data.]]>
Wed, 18 Mar 2015 00:00:00 PDT
Proteogenomics of the human hippocampus: The road ahead. Kang MG, Byun K, Kim JH, Park NH, Heinsen H, Ravid R, Steinbusch HW, Lee B, Park YM
Biochim Biophys Acta (Mar 2015)

The hippocampus is one of the most essential components of the human brain and plays an important role in learning and memory. The hippocampus has drawn great attention from scientists and clinicians due to its clinical importance in diseases such as Alzheimer's disease (AD), non-AD dementia, and epilepsy. Understanding the function of the hippocampus and related disease mechanisms requires comprehensive knowledge of the orchestration of the genome, epigenome, transcriptome, proteome, and post-translational modifications (PTMs) of proteins. The past decade has seen remarkable advances in the high-throughput sequencing techniques that are collectively called next generation sequencing (NGS). NGS enables the precise analysis of gene expression profiles in cells and tissues, allowing powerful and more feasible integration of expression data from the gene level to the protein level, even allowing "-omic" level assessment of PTMs. In addition, improved bioinformatics algorithms coupled with NGS technology are finally opening a new era for scientists to discover previously unidentified and elusive proteins. In the present review, we will focus mainly on the proteomics of the human hippocampus with an emphasis on the integrated analysis of genomics, epigenomics, transcriptomics, and proteomics. Finally, we will discuss our perspectives on the potential and future of proteomics in the field of hippocampal biology. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.]]>
Tue, 17 Mar 2015 00:00:00 PDT
Epigenomics of autoimmune diseases. Gupta B, Hawkins RD
Immunol Cell Biol (Mar 2015)

Autoimmune diseases are complex disorders of largely unknown etiology. Genetic studies have identified a limited number of causal genes from a marginal number of individuals, and demonstrated a high degree of discordance in monozygotic twins. Studies have begun to reveal epigenetic contributions to these diseases, primarily through the study of DNA methylation, but chromatin and non-coding RNA changes are also emerging. Moving forward an integrative analysis of genomic, transcriptomic and epigenomic data, with the latter two coming from specific cell types, will provide an understanding that has been missed from genetics alone. We provide an overview of the current state of the field and vision for deriving the epigenomics of autoimmunity.]]>
Tue, 17 Mar 2015 00:00:00 PDT
Not All Biofluids Are Created Equal: Chewing Over Salivary Diagnostics and the Epigenome. Wren ME, Shirtcliff EA, Drury SS
Clin Ther (Mar 2015)

This article describes progress to date in the characterization of the salivary epigenome and considers the importance of previous work in the salivary microbiome, proteome, endocrine analytes, genome, and transcriptome.]]>
Tue, 17 Mar 2015 00:00:00 PDT
Loss of inherited genomic imprints in mice leads to severe disruption in placental lipid metabolism. Himes KP, Young A, Koppes E, Stolz D, Barak Y, Sadovsky Y, Chaillet JR
Placenta (Apr 2015)

Monoallelic expression of imprinted genes is necessary for placental development and normal fetal growth. Differentially methylated domains (DMDs) largely determine the parental-specific monoallelic expression of imprinted genes. Maternally derived DNA (cytosine-5-) -methyltransferase 1o (DNMT1o) maintains DMDs during the eight-cell stage of development. DNMT1o-deficient mouse placentas have a generalized disruption of genomic imprints. Previous studies have demonstrated that DNMT1o deficiency alters placental morphology and broadens the embryonic weight distribution in late gestation. Lipids are critical for fetal growth. Thus, we assessed the impact of disrupted imprinting on placental lipids.]]>
Sun, 15 Mar 2015 00:00:00 PDT
Medulloblastoma development: tumor biology informs treatment decisions. Gopalakrishnan V, Tao RH, Dobson T, Brugmann W, Khatua S
CNS Oncol (Mar 2015)

SUMMARY  Medulloblastoma is the most common malignant pediatric brain tumor. Current treatments including surgery, craniospinal radiation and high-dose chemotherapy have led to improvement in survival. However, the risk for recurrence as well as significant long-term neurocognitive and endocrine sequelae associated with current treatment modalities underscore the urgent need for novel tumor-specific, normal brain-sparing therapies. It has also provided the impetus for research focused on providing a better understanding of medulloblastoma biology. The expectation is that such studies will lead to the identification of new therapeutic targets and eventually to an increase in personalized treatment approaches.]]>
Sun, 15 Mar 2015 00:00:00 PDT
Using the ENCODE Resource for Functional Annotation of Genetic Variants. Pazin MJ
Cold Spring Harb Protoc (Mar 2015)

This article illustrates the use of the Encyclopedia of DNA Elements (ENCODE) resource to generate or refine hypotheses from genomic data on disease and other phenotypic traits. First, the goals and history of ENCODE and related epigenomics projects are reviewed. Second, the rationale for ENCODE and the major data types used by ENCODE are briefly described, as are some standard heuristics for their interpretation. Third, the use of the ENCODE resource is examined. Standard use cases for ENCODE, accessing the ENCODE resource, and accessing data from related projects are discussed. Although the focus of this article is the use of ENCODE data, some of the same approaches can be used with data from other projects.]]>
Thu, 12 Mar 2015 00:00:00 PDT
Heritable IUGR and adult metabolic syndrome are reversible and associated with alterations in the metabolome following dietary supplementation of 1-carbon intermediates. Seferovic MD, Goodspeed DM, Chu DM, Krannich LA, Gonzalez-Rodriguez PJ, Cox JE, Aagaard KM
FASEB J (Mar 2015)

Metabolic syndrome (MetS), following intrauterine growth restriction (IUGR), is epigenetically heritable. Recently, we abrogated the F2 adult phenotype with essential nutrient supplementation (ENS) of intermediates along the 1-carbon pathway. With the use of the same grandparental uterine artery ligation model, we profiled the F2 serum metabolome at weaning [day (d)21; n = 76] and adulthood (d160; n = 12) to test if MetS is preceded by alterations in the metabolome. Indicative of developmentally programmed MetS, adult F2, formerly IUGR rats, were obese (621 g vs. 461 g; P < 0.0001), dyslipidemic (133 vs. 67 mg/dl; P < 0.001), and glucose intolerant (26 vs. 15 mg/kg/min; P < 0.01). Unbiased gas chromatography-mass spectrometry (GC-MS) profiling revealed 34 peaks corresponding to 12 nonredundant metabolites and 9 unknowns to be changing at weaning [false discovery rate (FDR) < 0.05]. Markers of later-in-life MetS included citric acid, glucosamine, myoinositol, and proline (P < 0.03). Hierarchical clustering revealed grouping by IUGR lineage and supplementation at d21 and d160. Weanlings grouped distinctly for ENS and IUGR by partial least-squares discriminate analysis (PLS-DA; P < 0.01), whereas paternal and maternal IUGR (IUGR(pat)/IUGR(mat), respectively) control-fed rats, destined for MetS, had a distinct metabolome at weaning (randomForest analysis; class error < 0.1) and adulthood (PLS-DA; P < 0.05). In sum, we have found that alterations in the metabolome accompany heritable IUGR, precede adult-onset MetS, and are partially amenable to dietary intervention.-Seferovic, M. D., Goodspeed, D. M., Chu, D. M., Krannich, L. A., Gonzalez-Rodriguez, P. J., Cox, J. E., Aagaard, K. M. Heritable IUGR and adult metabolic syndrome are reversible and associated with alterations in the metabolome following dietary supplementation of one-carbon intermediates.]]>
Wed, 11 Mar 2015 00:00:00 PDT
Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer J, Bock C
Cell Rep (Mar 2015)

Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples.]]>
Thu, 05 Mar 2015 00:00:00 PST
Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. Goodspeed D, Seferovic MD, Holland W, Mcknight RA, Summers SA, Branch DW, Lane RH, Aagaard KM
FASEB J (Mar 2015)

Intrauterine growth restriction (IUGR) confers heritable alterations in DNA methylation, rendering risk of adult metabolic syndrome (MetS). Because CpG methylation is coupled to intake of essential nutrients along the one-carbon pathway, we reasoned that essential nutrient supplementation (ENS) may abrogate IUGR-conferred multigenerational MetS. Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation causing IUGR in F1. Among the F2 generation, IUGR lineage rats were underweight at birth (6.7 vs. 8.0 g, P < 0.0001) and obese by adulthood (p160: 613 vs. 510 g; P < 0.0001). Dual energy X-ray absorptiometry studies revealed increased central fat mass (Δ+40 g), accompanied by dyslipidemic (>30% elevated, P < 0.05) serum triglycerides (139 mg/dl), very-LDLs (27.8 mg/dl), and fatty acids (632 µM). Hyperglycemic-euglycemic clamp studies and glucose tolerance testing revealed insulin resistance. Conversely, IUGR lineage ENS-fed rats did not manifest MetS, with significantly lower body weight (p160: 410 g), >5-fold less central fat mass, normal hepatic glucose efflux, and >70% reduced circulating triglycerides and very-LDLs compared with IUGR control-fed F2 offspring (P < 0.01). Moreover, increased methylation of the IGF-1 P2 transcriptional start site among IUGR lineage F2 offspring was reversed in ENS (P < 0.04). This is an initial demonstration that supplementation along the one-carbon pathway abrogates adult morbidity and associated epigenomic modifications of IGF-1 in a rodent model of multigenerational MetS.-Goodspeed, D., Seferovic, M. D., Holland, W., Mcknight, R. A., Summers, S. A., Branch, D. W., Lane, R. H., Aagaard, K. M. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats.]]>
Tue, 03 Mar 2015 00:00:00 PST
A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, Dantec C, Bouschet T, Varrault A, Journot L
Genome Res (Mar 2015)

Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.]]>
Tue, 03 Mar 2015 00:00:00 PST
Gestational Diabetes Mellitus Impairs Fetal Endothelial Cell Functions Through a Mechanism Involving MicroRNA-101 and Histone Methyltransferase Enhancer of Zester Homolog-2. Floris I, Descamps B, Vardeu A, Mitić T, Posadino AM, Shantikumar S, Sala-Newby G, Capobianco G, Mangialardi G, Howard L, Dessole S, Urrutia R, Pintus G, Emanueli C
Arterioscler Thromb Vasc Biol (Mar 2015)

Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms α and β.]]>
Thu, 26 Feb 2015 00:00:00 PST
Epigenetic profile of human adventitial progenitor cells correlates with therapeutic outcomes in a mouse model of limb ischemia. Gubernator M, Slater SC, Spencer HL, Spiteri I, Sottoriva A, Riu F, Rowlinson J, Avolio E, Katare R, Mangialardi G, Oikawa A, Reni C, Campagnolo P, Spinetti G, Touloumis A, Tavaré S, Prandi F, Pesce M, Hofner M, Klemens V, Emanueli C, Angelini G, Madeddu P
Arterioscler Thromb Vasc Biol (Mar 2015)

We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia.]]>
Thu, 26 Feb 2015 00:00:00 PST
Epigenetic mechanisms in diabetic complications and metabolic memory. Reddy MA, Zhang E, Natarajan R
Diabetologia (Mar 2015)

The incidence of diabetes and its associated micro- and macrovascular complications is greatly increasing worldwide. The most prevalent vascular complications of both type 1 and type 2 diabetes include nephropathy, retinopathy, neuropathy and cardiovascular diseases. Evidence suggests that both genetic and environmental factors are involved in these pathologies. Clinical trials have underscored the beneficial effects of intensive glycaemic control for preventing the progression of complications. Accumulating evidence suggests a key role for epigenetic mechanisms such as DNA methylation, histone post-translational modifications in chromatin, and non-coding RNAs in the complex interplay between genes and the environment. Factors associated with the pathology of diabetic complications, including hyperglycaemia, growth factors, oxidant stress and inflammatory factors can lead to dysregulation of these epigenetic mechanisms to alter the expression of pathological genes in target cells such as endothelial, vascular smooth muscle, retinal and cardiac cells, without changes in the underlying DNA sequence. Furthermore, long-term persistence of these alterations to the epigenome may be a key mechanism underlying the phenomenon of 'metabolic memory' and sustained vascular dysfunction despite attainment of glycaemic control. Current therapies for most diabetic complications have not been fully efficacious, and hence a study of epigenetic mechanisms that may be involved is clearly warranted as they can not only shed novel new insights into the pathology of diabetic complications, but also lead to the identification of much needed new drug targets. In this review, we highlight the emerging role of epigenetics and epigenomics in the vascular complications of diabetes and metabolic memory.]]>
Mon, 09 Feb 2015 00:00:00 PST
The role and interaction of imprinted genes in human fetal growth. Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P
Philos Trans R Soc Lond B Biol Sci (Mar 2015)

Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.]]>
Tue, 20 Jan 2015 00:00:00 PST