'; ?> geneimprint : Hot off the Press http://www.geneimprint.com/site/hot-off-the-press Daily listing of the most recent articles in epigenetics and imprinting, collected from the PubMed database. en-us Wed, 04 Mar 2015 14:51:00 PST Wed, 04 Mar 2015 14:51:00 PST jirtle@radonc.duke.edu james001@jirtle.com A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, Dantec C, Bouschet T, Varrault A, Journot L
Genome Res (Mar 2015)

Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.]]>
Tue, 03 Mar 2015 00:00:00 PST
Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. Goodspeed D, Seferovic MD, Holland W, Mcknight RA, Summers SA, Branch DW, Lane RH, Aagaard KM
FASEB J (Mar 2015)

Intrauterine growth restriction (IUGR) confers heritable alterations in DNA methylation, rendering risk of adult metabolic syndrome (MetS). Because CpG methylation is coupled to intake of essential nutrients along the one-carbon pathway, we reasoned that essential nutrient supplementation (ENS) may abrogate IUGR-conferred multigenerational MetS. Pregnant Sprague-Dawley rats underwent bilateral uterine artery ligation causing IUGR in F1. Among the F2 generation, IUGR lineage rats were underweight at birth (6.7 vs. 8.0 g, P < 0.0001) and obese by adulthood (p160: 613 vs. 510 g; P < 0.0001). Dual energy X-ray absorptiometry studies revealed increased central fat mass (Δ+40 g), accompanied by dyslipidemic (>30% elevated, P < 0.05) serum triglycerides (139 mg/dl), very-LDLs (27.8 mg/dl), and fatty acids (632 µM). Hyperglycemic-euglycemic clamp studies and glucose tolerance testing revealed insulin resistance. Conversely, IUGR lineage ENS-fed rats did not manifest MetS, with significantly lower body weight (p160: 410 g), >5-fold less central fat mass, normal hepatic glucose efflux, and >70% reduced circulating triglycerides and very-LDLs compared with IUGR control-fed F2 offspring (P < 0.01). Moreover, increased methylation of the IGF-1 P2 transcriptional start site among IUGR lineage F2 offspring was reversed in ENS (P < 0.04). This is an initial demonstration that supplementation along the one-carbon pathway abrogates adult morbidity and associated epigenomic modifications of IGF-1 in a rodent model of multigenerational MetS.-Goodspeed, D., Seferovic, M. D., Holland, W., Mcknight, R. A., Summers, S. A., Branch, D. W., Lane, R. H., Aagaard, K. M. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats.]]>
Tue, 03 Mar 2015 00:00:00 PST
Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer J, Bock C
Cell Rep (Feb 2015)

Methods for single-cell genome and transcriptome sequencing have contributed to our understanding of cellular heterogeneity, whereas methods for single-cell epigenomics are much less established. Here, we describe a whole-genome bisulfite sequencing (WGBS) assay that enables DNA methylation mapping in very small cell populations (μWGBS) and single cells (scWGBS). Our assay is optimized for profiling many samples at low coverage, and we describe a bioinformatic method that analyzes collections of single-cell methylomes to infer cell-state dynamics. Using these technological advances, we studied epigenomic cell-state dynamics in three in vitro models of cellular differentiation and pluripotency, where we observed characteristic patterns of epigenome remodeling and cell-to-cell heterogeneity. The described method enables single-cell analysis of DNA methylation in a broad range of biological systems, including embryonic development, stem cell differentiation, and cancer. It can also be used to establish composite methylomes that account for cell-to-cell heterogeneity in complex tissue samples.]]>
Tue, 03 Mar 2015 00:00:00 PST
The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: A review. Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Ghasemlou M, Hekmatdoost A
Gene (Feb 2015)

Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.]]>
Sun, 01 Mar 2015 00:00:00 PST
Characterising the epigenome as a key component of the fetal exposome in evaluating in utero exposures and childhood cancer risk. Ghantous A, Hernandez-Vargas H, Byrnes G, Dwyer T, Herceg Z
Mutagenesis (Feb 2015)

Recent advances in laboratory sciences hold a promise for a 'leap forward' in understanding the aetiology of complex human diseases, notably cancer, potentially providing an evidence base for prevention. For example, remarkable advances in epigenomics have an important impact on our understanding of biological phenomena and importance of environmental stressors in complex diseases. Environmental and lifestyle factors are thought to be implicated in the development of a wide range of human cancers by eliciting changes in the epigenome. These changes, thus, represent attractive targets for biomarker discovery intended for the improvement of exposure and risk assessment, diagnosis and prognosis and provision of short-term outcomes in intervention studies. The epigenome can be viewed as an interface between the genome and the environment; therefore, aberrant epigenetic events associated with environmental exposures are likely to play an important role in the onset and progression of different human diseases. The advent of powerful technologies for analysing epigenetic patterns in both cancer tissues and normal cells holds promise that the next few years will be fundamental for the identification of critical cancer- and exposure-associated epigenetic changes and for their evaluation as new generation of biomarkers. Here, we discuss new opportunities in the current age of 'omics' technologies for studies with prospective design and associated biospecimens that represent exciting potential for characterising the epigenome as a key component of the fetal exposome and for understanding causal pathways and robust predictors of cancer risk and associated environmental determinants during in utero life. Such studies should improve our knowledge concerning the aetiology of childhood cancer and identify both novel biomarkers and clues to causation, thus, providing an evidence base for cancer prevention.]]>
Sat, 28 Feb 2015 00:00:00 PST
Epigenetic profile of human adventitial progenitor cells correlates with therapeutic outcomes in a mouse model of limb ischemia. Gubernator M, Slater SC, Spencer HL, Spiteri I, Sottoriva A, Riu F, Rowlinson J, Avolio E, Katare R, Mangialardi G, Oikawa A, Reni C, Campagnolo P, Spinetti G, Touloumis A, Tavaré S, Prandi F, Pesce M, Hofner M, Klemens V, Emanueli C, Angelini G, Madeddu P
Arterioscler Thromb Vasc Biol (Mar 2015)

We investigated the association between the functional, epigenetic, and expressional profile of human adventitial progenitor cells (APCs) and therapeutic activity in a model of limb ischemia.]]>
Thu, 26 Feb 2015 00:00:00 PST
Gestational Diabetes Mellitus Impairs Fetal Endothelial Cell Functions Through a Mechanism Involving MicroRNA-101 and Histone Methyltransferase Enhancer of Zester Homolog-2. Floris I, Descamps B, Vardeu A, Mitić T, Posadino AM, Shantikumar S, Sala-Newby G, Capobianco G, Mangialardi G, Howard L, Dessole S, Urrutia R, Pintus G, Emanueli C
Arterioscler Thromb Vasc Biol (Mar 2015)

Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms α and β.]]>
Thu, 26 Feb 2015 00:00:00 PST
Biomarkers: background, classification and guidelines for applications in nutritional epidemiology. Corella D, Ordovás JM
Nutr Hosp ()

One of the main problems in nutritional epidemiology is to assess food intake as well as nutrient/food component intake to a high level of validity and reliability. To help in this process, the need to have good biomarkers that more objectively allow us to evaluate the diet consumed in a more standardized, valid and precise way has often been commented upon. There are various definitions of biomarkers and also different classifications of the same. In general a biomarker can be defined as a characteristic that can objectively measure different biological samples and that can be evaluated as an exposure marker of normal or pathogenic biological processes or of responses to a certain intervention. The biological samples most commonly used in nutritional epidemiology are blood, red blood cells, plasma, serum, urine, nails, saliva, faeces and samples of different tissues. Exposure biomarkers (dietary intake), biomarkers of effects and biomarkers of disease status can be determined from these samples. In turn, exposure biomarkers can be temporarily categorized into markers of acute, medium term or chronic effects. Many difficulties arise in identifying good biomarkers. Currently, advances in omics are opening up new possibilities for obtaining new biomarkers of various kinds, using genomics, epigenomics, transcriptomics, lipidomics, proteomics and metabolomics. We shall review the present situation of biomarkers in nutritional epidemiology as well as the future trends of the new omic biomarkers.]]>
Thu, 26 Feb 2015 00:00:00 PST
A Survey of Imprinted Gene Expression in Mouse Trophoblast Stem Cells. Calabrese JM, Starmer J, Schertzer MD, Yee D, Magnuson T
G3 (Bethesda) (Feb 2015)

Several hundred mammalian genes are expressed preferentially from one parental allele due to a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines, which are ex vivo derivatives of a progenitor population that gives rise to the placental tissue of the mouse. We found evidence of imprinted expression for 48 genes, 31 of which had previously been described as imprinted and 17 of which we suggest as candidate imprinted genes. An equal number of maternally and paternally biased genes were detected. On average, candidate imprinted genes were more lowly expressed and had weaker parent-of-origin biases than known imprinted genes. Several known and candidate imprinted genes showed variability in parent-of-origin expression bias between the six trophoblast stem cell lines. Sixteen of the 48 known and candidate imprinted genes were previously or newly annotated noncoding RNAs, and six encoded for a total of 60 annotated microRNAs. Pyrosequencing across our panel of trophoblast stem cell lines returned levels of imprinted expression that were concordant with RNA-Seq measurements for all eight genes examined. Our results solidify trophoblast stem cells as a cell culture-based experimental model to study genomic imprinting, and provide a quantitative foundation upon which to delineate mechanisms by which the process is maintained in the mouse.]]>
Wed, 25 Feb 2015 00:00:00 PST
Epigenomics, gestational programming and risk of metabolic syndrome. Desai M, Jellyman JK, Ross MG
Int J Obes (Lond) (Feb 2015)

Epigenetic mechanisms are emerging as mediators linking early environmental exposures during pregnancy with programmed changes in gene expression that alter offspring growth and development. There is irrefutable evidence from human and animal studies that nutrient and environmental agent exposures (for example, endocrine disruptors) during pregnancy may affect fetal/newborn development resulting in offspring obesity and obesity-associated metabolic abnormalities (metabolic syndrome). This concept of 'gestational programming' is associated with alterations to the epigenome (nongenomic) rather than changes in the DNA sequence (genomic). Epigenetic alterations induced by suboptimal maternal nutrition/endocrine factors include DNA methylation, histone modifications, chromatin remodeling and/or regulatory feedback by microRNAs, all of which have the ability to modulate gene expression and promote the metabolic syndrome phenotype. Recent studies have shown tissue-specific transcriptome patterns and phenotypes not only in the exposed individual, but also in subsequent progeny. Notably, the transmission of gestational programming effects to subsequent generations occurs in the absence of continued adverse environmental exposures, thus propagating the cycle of obesity and metabolic syndrome. This phenomenon may be attributed to an extrinsic process resulting from the maternal phenotype and the associated nutrient alterations occurring within each pregnancy. In addition, epigenetic inheritance may occur through somatic cells or through the germ line involving both maternal and paternal lineages. Since epigenetic gene modifications may be reversible, understanding how epigenetic mechanisms contribute to transgenerational transmission of obesity and metabolic dysfunction is crucial for the development of novel early detection and prevention strategies for programmed metabolic syndrome. In this review we discuss the evidence in human and animal studies for the role of epigenomic mechanisms in the transgenerational transmission of programmed obesity and metabolic syndrome.International Journal of Obesity advance online publication, 24 February 2015; doi:10.1038/ijo.2015.13.]]>
Tue, 24 Feb 2015 00:00:00 PST
Imprinted genes in myeloid lineage commitment in normal and malignant hematopoiesis. Benetatos L, Vartholomatos G
Leukemia (Feb 2015)

Genomic imprinting is characterized by the parent-of-origin monoallelic expression of several diploid genes due to epigenetic regulation. Imprinted genes (IGs) are key players in development, supporting the ability of a genotype to produce phenotypes in response to environmental stimuli. IGs are highly expressed during prenatal stages but are downregulated after birth. They also affect aspects of life other than growth such as cognition, behavior, adaption to novel environments, social dominance and memory consolidation. Deregulated genomic imprinting leads to developmental disorders and is associated with solid and blood cancer as well. Several data have been published highlighting the involvement of IGs in as early as the very small embryonic like stem cells stage and further during myeloid lineage commitment in normal and malignant hematopoiesis. Therefore, we have assembled the current knowledge on the topic, based mainly on recent findings, trying not to focus on a particular cluster but rather to have a global view of several different IGs in hematopoiesis.Leukemia accepted article preview online, 23 February 2015. doi:10.1038/leu.2015.47.]]>
Mon, 23 Feb 2015 00:00:00 PST
Epigenomics: Roadmap for regulation. Romanoski CE, Glass CK, Stunnenberg HG, Wilson L, Almouzni G
Nature (Feb 2015)

]]>
Thu, 19 Feb 2015 00:00:00 PST
Integrative analysis of 111 reference human epigenomes.  , Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M
Nature (Feb 2015)

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.]]>
Thu, 19 Feb 2015 00:00:00 PST
Adverse epigenetic signatures by histone methyltransferase set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, Volpe M, Lüscher TF, Cosentino F
Circ Cardiovasc Genet (Feb 2015)

Cellular studies showed that histone methyltransferase Set7 mediates high glucose-induced inflammation via epigenetic regulation of the transcription factor NF-kB. However, the link between Set7 and vascular dysfunction in patients with diabetes mellitus remains unknown. This study was designed to investigate whether Set7 contributes to vascular dysfunction in patients with type 2 diabetes mellitus (T2DM).]]>
Wed, 18 Feb 2015 00:00:00 PST
Intermediate DNA methylation is a conserved signature of genome regulation. Elliott G, Hong C, Xing X, Zhou X, Li D, Coarfa C, Bell RJ, Maire CL, Ligon KL, Sigaroudinia M, Gascard P, Tlsty TD, Harris RA, Schalkwyk LC, Bilenky M, Mill J, Farnham PJ, Kellis M, Marra MA, Milosavljevic A, Hirst M, Stormo GD, Wang T, Costello JF
Nat Commun (2015)

The role of intermediate methylation states in DNA is unclear. Here, to comprehensively identify regions of intermediate methylation and their quantitative relationship with gene activity, we apply integrative and comparative epigenomics to 25 human primary cell and tissue samples. We report 18,452 intermediate methylation regions located near 36% of genes and enriched at enhancers, exons and DNase I hypersensitivity sites. Intermediate methylation regions average 57% methylation, are predominantly allele-independent and are conserved across individuals and between mouse and human, suggesting a conserved function. These regions have an intermediate level of active chromatin marks and their associated genes have intermediate transcriptional activity. Exonic intermediate methylation correlates with exon inclusion at a level between that of fully methylated and unmethylated exons, highlighting gene context-dependent functions. We conclude that intermediate DNA methylation is a conserved signature of gene regulation and exon usage.]]>
Wed, 18 Feb 2015 00:00:00 PST
Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Amin V, Harris RA, Onuchic V, Jackson AR, Charnecki T, Paithankar S, Lakshmi Subramanian S, Riehle K, Coarfa C, Milosavljevic A
Nat Commun (2015)

Tissue-specific expression of lincRNAs suggests developmental and cell-type-specific functions, yet tissue specificity was established for only a small fraction of lincRNAs. Here, by analysing 111 reference epigenomes from the NIH Roadmap Epigenomics project, we determine tissue-specific epigenetic regulation for 3,753 (69% examined) lincRNAs, with 54% active in one of the 14 cell/tissue clusters and an additional 15% in two or three clusters. A larger fraction of lincRNA TSSs is marked in a tissue-specific manner by H3K4me1 than by H3K4me3. The tissue-specific lincRNAs are strongly linked to tissue-specific pathways and undergo distinct chromatin state transitions during cellular differentiation. Polycomb-regulated lincRNAs reside in the bivalent state in embryonic stem cells and many of them undergo H3K27me3-mediated silencing at early stages of differentiation. The exquisitely tissue-specific epigenetic regulation of lincRNAs and the assignment of a majority of them to specific tissue types will inform future studies of this newly discovered class of genes.]]>
Wed, 18 Feb 2015 00:00:00 PST
Epigenetic mechanisms in diabetic complications and metabolic memory. Reddy MA, Zhang E, Natarajan R
Diabetologia (Mar 2015)

The incidence of diabetes and its associated micro- and macrovascular complications is greatly increasing worldwide. The most prevalent vascular complications of both type 1 and type 2 diabetes include nephropathy, retinopathy, neuropathy and cardiovascular diseases. Evidence suggests that both genetic and environmental factors are involved in these pathologies. Clinical trials have underscored the beneficial effects of intensive glycaemic control for preventing the progression of complications. Accumulating evidence suggests a key role for epigenetic mechanisms such as DNA methylation, histone post-translational modifications in chromatin, and non-coding RNAs in the complex interplay between genes and the environment. Factors associated with the pathology of diabetic complications, including hyperglycaemia, growth factors, oxidant stress and inflammatory factors can lead to dysregulation of these epigenetic mechanisms to alter the expression of pathological genes in target cells such as endothelial, vascular smooth muscle, retinal and cardiac cells, without changes in the underlying DNA sequence. Furthermore, long-term persistence of these alterations to the epigenome may be a key mechanism underlying the phenomenon of 'metabolic memory' and sustained vascular dysfunction despite attainment of glycaemic control. Current therapies for most diabetic complications have not been fully efficacious, and hence a study of epigenetic mechanisms that may be involved is clearly warranted as they can not only shed novel new insights into the pathology of diabetic complications, but also lead to the identification of much needed new drug targets. In this review, we highlight the emerging role of epigenetics and epigenomics in the vascular complications of diabetes and metabolic memory.]]>
Mon, 09 Feb 2015 00:00:00 PST
Female Fertility: Is it Safe to "Freeze?". Zhang L, Yan LY, Zhi X, Yan J, Qiao J
Chin Med J (Engl) (Feb 2015)

To evaluate the safety and risk of cryopreservation in female fertility preservation.]]>
Sat, 31 Jan 2015 00:00:00 PST
Journal of cellular physiology: volume 230, number 5, may 2015.
J Cell Physiol (May 2015)

Cover: Protein binding partners of human Notch1 are visualized using the BioGRID website. Only physical interactions are shown and interspecies interactions are excluded. Canonical Notch binding partners are labeled in green, chromatin factors in red, and some examples of crosstalk to other signaling pathway mentioned in the text are labeled yellow. See reviews on Nuclear Receptors and Epigenomics in this issue: Schwanbeck, Wang et al., and Stachowiak et al. on pages 969-1002.]]>
Thu, 29 Jan 2015 00:00:00 PST
The role and interaction of imprinted genes in human fetal growth. Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P
Philos Trans R Soc Lond B Biol Sci (Mar 2015)

Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.]]>
Tue, 20 Jan 2015 00:00:00 PST